	%+ - &%				
		#			

															8	\$%) %)		
			%	+- ·	- &	8%	#												
													#			G71 \91 \1 CHD			#
						I		8	\$%&				%#)	Quality-of-Service Driven Power a Sub-Carrier Allocation Policy			l	·	·
								8	\$%(' #%(Vehicular Communication Network On Array-Processing-Based Qua	S.				
							MIMO	8	\$%\$				% # %	Orthogonal Space–Time Bloc Coded OFDM Systems.					
								8	8 \$,				&#)</td><td>On Multiuser MIMO Multistrea Transmission.</td><td>am</td><td></td><td></td><td></td><td></td></tr><tr><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>8</td><td>\$\$)</td><td></td><td></td><td></td><td>8#)</td><td>Interference-Aware Cross-Layer De gn for Distributed Video Transmiss</td><td></td><td></td><td></td><td></td><td></td></tr><tr><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>8</td><td>8\$-</td><td></td><td></td><td></td><td>%#)</td><td>n in Wireless Networks .</td><td></td><td></td><td></td><td></td><td></td></tr><tr><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>5%(5%(</td><td></td><td></td><td></td><td>%#%</td><td>Effects of Channel Estimation Er on Array Processing Based QO-STI Coded OEDM Systems</td><td>BC</td><td></td><td></td><td></td><td></td></tr><tr><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>\$%&</td><td></td><td></td><td></td><td>%#%</td><td>Coded OFDM Systems. on3209y11sche[Co-1.216s64[Co-1u] On Array-Proce67c.0hnd1J0 15v[.6/6</td><td></td><td></td><td></td><td></td><td></td></tr><tr><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>Dptimizing Multiuser Multime Fransmission Through Power</td><td></td><td>\$%%</td><td>IEEE ICCT</td><td>2012</td><td></td><td>8∰</td><td></td><td></td><td></td><td></td><td></td><td></td></tr><tr><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>An Interference Suppress Scheme Using Distributed</td><td>ion</td><td></td><td>IEEE ICCT</td><td>2011</td><td></td><td>8#</td><td></td><td></td><td></td><td></td><td></td><td></td></tr></tbody></table>						

OFDJ0 -1.6 OF QoS gu